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The issue of subpopulation susceptibility to
fine particulate matter (< 2.5 µm in aerody-
namic diameter; PM2.5) has been given
increased attention by researchers in recent
years, motivated in part by the research priori-
ties articulated by the National Academy of
Sciences (1). Understanding patterns of suscep-
tibility not only would help identify and pro-
tect sensitive subpopulations, but also would
contribute to the understanding of mechanisms
by which PM2.5 might influence human health.

Often, air pollution policies are informed
by risk assessments or benefit–cost analyses,
which generally focus on the total health ben-
efits of alternative emission control strategies
(2–5). Because relevant susceptibility evi-
dence is limited, differential effects on suscep-
tible subpopulations are rarely incorporated.
Typically, the same relative risks are applied
to all individuals in an “at-risk” age group,
and baseline rates of disease or health care use
are assumed to be uniform across large geo-
graphic areas (often national averages).

However, it is likely that the effects of air
pollution vary widely across subpopulations,
depending on demographics, behavior patterns,
income, access to health care, and other factors.
Differences could exist either in relative risks (if
an increment of air pollution yields a different
percentage increase in different populations) or

in absolute risks (if there are differences in base-
line disease patterns by subpopulation, inde-
pendent of air pollution). For a benefits
assessment, if policy makers were concerned
about distributional issues or if the ultimate val-
uation of benefits depended on population
characteristics, the incorporation of susceptibil-
ity could potentially influence the conclusions.

One current policy issue for which infor-
mation on susceptibility could be influential is
the regulation of emissions from older power
plants. To date, older power plants have not
been required to meet the same control require-
ments as new sources, helping to extend the
useful lifetime of older facilities (6–8). These
facilities contribute a substantial fraction of
national power sector emissions. In 1999, coal-
fired power plants contributed approximately
86% of nitrogen oxide (NOx) emissions and
93% of sulfur dioxide emissions from the util-
ity sector, largely from facilities exempted from
new source standards (9).

At the time this article was written (2001),
several states (including Massachusetts,
Connecticut, and Texas) had introduced mul-
tipollutant regulations or legislation to require
older power plants to meet emission levels
commensurate with the application of “Best
Available Control Technology” (BACT; tech-
nology required under the Clean Air Act for

new or modified sources in attainment areas).
Pollutants considered typically included NOx

and SO2, as well as mercury and carbon diox-
ide. Multipollutant power plant legislation
was also being debated at the federal level, but
no bills or regulations had been passed at the
time of our analysis.

From both a state and a federal perspec-
tive, the question of how the benefits of emis-
sion controls would be distributed could be
important. Policy makers may be concerned
about providing benefits to high-risk commu-
nities, communities near power plants, or
other subpopulations. If these questions are
important, population susceptibility could
influence the policy choices (e.g., emission
trading vs. mandatory on-site controls).

In this article, we develop a model to esti-
mate the health benefits associated with emis-
sion reductions at older fossil-fueled power
plants. We focus on both primary PM2.5 and
secondary sulfate and nitrate particles formed
through emissions of SO2 and NOx. Here we
consider a case study of all older power plants
located within a 50-mile (80-km) radius of
Washington, DC. We calculated three health
end points—premature mortality, cardiovas-
cular hospital admissions (CHA) in the
elderly, and pediatric asthma emergency
room visits (ERV)—both using conventional
assumptions and then considering available
evidence for differential effects on susceptible
subpopulations. Our goal was both to quan-
tify the health benefits associated with the
implementation of BACT at the selected
power plants and to consider whether intro-
duction of susceptibility models might affect
the interpretation of our findings.

Case Study Setting

For this analysis, our goal was to select a geo-
graphic area that had multiple older power
plants nearby and geographic heterogeneity in
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In evaluating risks from air pollution, health impact assessments often focus on the magnitude of
the impacts without explicitly considering the distribution of impacts across subpopulations. In
this study, we constructed a model to estimate the magnitude and distribution of health benefits
associated with emission controls at five older power plants in the Washington, DC, area. We
used the CALPUFF atmospheric dispersion model to determine the primary and secondary fine-
particulate-matter (< 2.5 µm in aerodynamic diameter) concentration reductions associated with
the hypothetical application of “Best Available Control Technology” to the selected power plants.
We combined these concentration reductions with concentration–response functions for mortality
and selected morbidity outcomes, using a conventional approach as well as considering susceptible
subpopulations. Incorporating susceptibility had a minimal effect on total benefits, with central
estimates of approximately 240 fewer premature deaths, 60 fewer cardiovascular hospital admis-
sions (CHA), and 160 fewer pediatric asthma emergency room visits (ERV) per year. However,
because individuals with lower education appear to have both higher background mortality rates
and higher relative risks for air-pollution–related mortality, stratifying by educational attainment
implies that 51% of the mortality benefits accrue among the 25% of the population with less than
high school education. Similarly, diabetics and African Americans bear disproportionate shares of
the CHA and ERV benefits, respectively. Although our ability to characterize subpopulations is
constrained by the available information, our analysis demonstrates that incorporation of suscepti-
bility information significantly affects demographic and geographic patterns of health benefits and
enhances our understanding of individuals likely to benefit from emission controls. Key words:
asthma emergency department visits, cardiovascular hospital admissions, diabetes, education, mor-
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factors that might influence relative risks,
baseline health status, or health care use (e.g.,
socioeconomic status). Washington, DC, and
its surrounding suburbs provide an example
of such a region. According to 1990 U.S.
Census data (10), median household income
in Washington, DC, ranged from less than
$10,000 to more than $150,000 across cen-
sus tracts. Washington, DC, is also quite
racially divided, with few African Americans
residing in the western half of the city and
mostly African Americans residing in the east-
ern half of the city.

In addition, within a 50-mile (80-km)
radius of Washington, DC, there are five fos-
sil-fueled power plants grandfathered under
the Clean Air Act—Benning, Chalk Point,
Dickerson, Possum Point, and Potomac
River (Table 1). The choice of these five
power plants is somewhat artificial because
any single regulation would not affect only
these plants. However, our analysis is meant
to be illustrative, and these five plants are
likely the greatest contributors to heterogene-
ity in power-plant–related exposures in the
area. Inclusion of additional power plants
would increase the total benefits but decrease
the relative concentration gradient across the
Washington, DC, area.

Methods

To quantify the magnitude and distribution
of health benefits, we estimated the emission
reductions of key pollutants, applied an
atmospheric dispersion model to determine
incremental concentration reductions, and
derived concentration–response functions.
Any such analysis involves numerous bound-
ary decisions and contains substantial uncer-
tainties. In this article, we focus largely on
issues related to susceptible subpopulations
and the resulting implications. We do not
extensively address the complexities of other
elements of the model, nor do we provide a
formal analysis of uncertainties. We also do
not consider the economic valuation dimen-
sion of a benefits assessment. Additional
information about parametric uncertainties in
our atmospheric model (4,11) and issues
related to differential particle toxicity or alter-
native interpretations of the health evidence
(4) can be found elsewhere.

Quantification of emissions. We esti-
mated emissions of PM2.5 and its precursors
(NOx and SO2) following the model structure
in our earlier analyses (4,11) and supported
by the fact that PM2.5 has dominated aggre-
gate benefits in past air pollution risk assess-
ments (2,3). This omits any benefits
associated with ozone, air toxics, or other
impact pathways from the power sector. Of
note, most proposed regulations consider
NOx and SO2 but do not directly require
controls for primary PM2.5 (although many

NOx and SO2 control strategies would affect
primary PM2.5).

We used 1999 as the base year for our
analysis, evaluating the concentration and
health benefits that would have been obtained
had lower target emission rates been achieved.
This is not identical to the future benefits
that might be obtained through pending reg-
ulation, because some facilities have ongoing
or near-term plans for repowering or emission
controls.

Emissions of SO2 and NOx were taken
from the 1999 acid rain program emissions
scorecard from the U.S. Environmental
Protection Agency (EPA) (12). To capture
seasonality in emissions, we incorporated
quarterly average emission rates when
reported. When no data on seasonal emis-
sions were available, we assumed constant
emissions per unit of heat input. For filterable
PM2.5, total plant emissions were taken from
the U.S. EPA National Emission Trends
database (13). We estimated condensable
PM2.5 emissions given fuel type and sulfur
content, using AP-42 air pollution emission
factors from the U.S. EPA (14).

We selected lower target emissions to cor-
respond to the levels proposed in multiple
regulations, which correspond to the applica-
tion of BACT. This resulted in target emis-
sion rates of 0.3 lb/MMBTU (million British
thermal units) of SO2, 0.15 lb/MMBTU of
NOx, and 0.01 lb/MMBTU of filterable par-
ticulate matter. Lower target condensable par-
ticulate emissions were taken from AP-42,
given assumed application of control tech-
nologies. Because both Dickerson and
Benning power plants have actual filterable
PM2.5 emissions less than the lower target
rate, we set the lower target filterable PM2.5

emission rate equal to actual emissions for
these plants.

Atmospheric modeling. We established a
receptor grid covering a 400-km (250-mile)
radius around Washington, DC (centered at
38.9°N, 77°W), to capture a significant frac-
tion of total benefits without extending the
dispersion modeling boundaries excessively
(Figure 1). Because of our focus on spatial
patterns, it was important to determine
concentration reductions at small geographic

scales close to the sources. We selected census
tracts within 100 km of Washington, DC,
because they are relatively small (generally
between 2,500 and 8,000 people) and were
theoretically designed to be socioeconomi-
cally homogeneous. Beyond 100 km, we used
county-level resolution, resulting in a nested
receptor grid with 1,908 receptors. Using
1990 Census data (10) (the most recent data
available at the time of our study), our recep-
tor grid contained 47 million individuals, 7
million of whom live within 100 km of
Washington, DC.

We conducted our atmospheric modeling
using CALPUFF (CALMET version 5.2
000602a, CALPUFF version 5.4-000602-1,
CALPOST version 5.2 991104b; Earth Tech,
Concord, MA). CALPUFF is a regional-scale
Lagrangian puff model that has been recom-
mended by the U.S. EPA for long-range
transport modeling (15), given that it has
been shown to be relatively unbiased at dis-
tances out to 200 km (16). In general, limita-
tions in the atmospheric chemistry make the
secondary pollutant estimates relatively more
uncertain than the primary PM2.5 estimates,
given the nonlinearities associated with sul-
fate and nitrate formation.

Our methodology to generate meteoro-
logic files for CALMET was similar to the
approach in our past applications and is
described in depth elsewhere (4,11). We com-
bined National Oceanic and Atmospheric
Administration (NOAA) prognostic model
outputs with mesoscale data assimilation sys-
tems for each hour across our case study year
(January 1999–January 2000). This involved
combining lower-resolution upper air data
(40-km grid spacing) generated through
NOAA’s Rapid Update Cycle (RUC2)
model (17) with Aviation Routine Weather
Report (METAR) surface observations and
cloud cover data available at 15 km resolu-
tion (18). These data sources were combined
using the Advanced Regional Prediction
System (ARPS) Data Assimilation System
(ADAS) and provided hourly CALMET
windfields within eight vertical layers.
Precipitation data were taken from all
National Climatic Data Center stations
within the receptor region, with CALMET
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Table 1. Characteristics of five power plants in Washington, DC, case study (1999 data).

Possum Potomac
Characteristics Benning Chalk Point Dickerson Point River

Initial year of commercial operation 1968 1964 1959 1948 1949
Nameplate capacity (megawatts) 580 2,046 588 1,373 514
Heat input (MMBTU) 3,304,107 85,352,274 33,592,811 28,930,805 32,100,184
Emissions, tons (% per quarter)

SO2 1,432 57,630 30,637 19,497 17,627
(2, 21, 76, 2) (21, 25, 31, 23) (30, 17, 34, 18) (24, 22, 32, 23) (22, 28, 29, 21)

NOx 447 25,222 10,709 5,116 6,893
(2, 22, 74, 1) (20, 24, 30, 26) (30, 17, 34, 18) (25, 22, 32, 21) (21, 28, 30, 21)

PM2.5 12 304 14 156 106
(2, 22, 74, 2) (21, 27, 33, 20) (30, 17, 34, 18) (23, 20, 37, 20) (21, 28, 29, 22)



defaults used for interpolation between sta-
tions. The primary difference from our previ-
ous applications was the inclusion of 50
evenly spaced “soundings” based on columns
of the ADAS data, to more accurately provide
a reasonable high-resolution temperature field
and subsequent planetary boundary-layer
depth estimates.

In CALPUFF, we adopted recommended
modeling assumptions that were used in our
past applications (4,11). We used the
MESOPUFF II chemical transformation
mechanism, which is generally preferred in
urban settings. Wet and dry deposition were
incorporated using precipitation data and
CALPUFF default deposition rates. Hourly
background ozone concentrations were taken
from five U.S. EPA Clean Air Status and
Trends Network (CASTNET) stations
spaced throughout our receptor region
(Prince George’s County, MD; Mercer
County, NJ; Elk County, PA; Prince Edward
County, VA; Gilmer County, WV), and we
assumed a background ammonia concentra-
tion of 1 ppb.

For brevity’s sake, in this article we do
not provide sensitivity or uncertainty analy-
ses for our atmospheric modeling. In our
past analyses (4,11), we found total benefits
to be reasonably stable given single paramet-
ric changes in CALPUFF, including the
chemical conversion mechanism, background

ammonia concentration, and treatment of
wet and dry deposition. In addition, we con-
cluded that any bias associated with either
hypothetical CALPUFF overestimation
beyond 200 km or exclusion of long-range
exposures is relatively small in comparison
with other model uncertainties. A compre-
hensive risk assessment would need to incor-
porate these uncertainties in an evaluation of
overall model uncertainty.

Health evidence. Although numerous
health outcomes have been incorporated into
past analyses (2), here we focus on a subset for
which some evidence exists for differential
effects on susceptible subpopulations. The
choice of outcomes as well as the subpopula-
tions considered therefore depends entirely on
the current literature and is not meant to be
comprehensive. Furthermore, we restricted
the health evidence to epidemiologic studies
conducted in the United States, because pat-
terns of health care use and the relationship
between demographics and health status likely
vary across countries. Given these criteria, we
evaluated premature mortality (stratified by
education), CHA for the elderly (stratified by
diabetic status and age), and asthma ERV for
children (stratified by race and age). For each
outcome, we both describe a conventional
approach and construct a susceptibility model.
Our goal is not to consider the complete array
of susceptible subpopulations, but rather to

select one example for each outcome for
which epidemiologic evidence and popula-
tion data exist.

Premature mortality. For premature mor-
tality, we derived a central estimate from the
follow-up analysis of the American Cancer
Society (ACS) cohort study (19). Several other
cohort studies are available (20,21), but the
ACS study has the largest and most geograph-
ically diverse population, with relative risks
bounded by other studies and a statistical
approach suggested by a detailed reanalysis
(22). For all-cause mortality, the authors cal-
culated a relative risk of 1.04 [95% confidence
interval (CI), 1.01–1.08] for a 10 µg/m3

increase in annual mean PM2.5 concentrations
(using 1979–1983 concentrations). The rela-
tive risk was slightly higher (1.06) using more
recent pollution data, but we use the lower
figure to be conservative and because Pope et
al. (19) presented stratified estimates based on
the 1979–1983 concentrations.

Relative risks did not vary substantially
across most demographic factors except edu-
cational attainment. Educational attainment
appeared to be a strong effect modifier
across all causes of mortality. The relative
risk for a 10 µg/m3 increase in annual mean
PM2.5 concentrations was 1.085 (95% CI,
1.031–1.142) for individuals with less than
high school education, 1.045 (95% CI,
1.004–1.087) for individuals with high
school education, and 1.003 (95% CI,
0.967–1.040) for individuals with more
than high school education.

There are numerous uncertainties related
to the application of this stratified relative
risk. The ACS cohort is somewhat more edu-
cated than the population at large, and corre-
lated terms such as race and poverty status
have not been significant in time-series mor-
tality or hospital admissions studies (23–25).
In addition, the statistical approach implies
that we are modeling the effect of education
controlling for smoking and other factors,
which would ideally be included to model the
influence of all risk factors correlated with
educational attainment. Regardless, we use
the education-stratified values to determine
the implications of the reported relationship.

For background mortality rates, the stan-
dard approach is to apply county-level aver-
ages to individuals 30 or more years old [the
age range considered in the ACS study (19)].
We used this as our baseline approach, but
for our susceptibility model, we considered
whether mortality rates vary as a function of
education while still averaging to the reported
county-level rates.

There is a strong and consistent negative
relationship between socioeconomic status
and all-cause mortality (26). Socioeconomic
status can be measured by occupation,
income, education, or some combination of
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Figure 1. Receptor grid and power plant locations for Washington, DC, case study.
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these terms. It is generally believed that both
income (27) and educational attainment (28)
are independent predictors of mortality,
although the bases for these relationships are
not well understood. Some argue that those in
lower socioeconomic classes display high-risk
behaviors, such as smoking, being overweight,
and not exercising (29), producing higher
mortality rates. However, only a small fraction
of the increased mortality can be explained by
a higher prevalence of high-risk behaviors (30),
so there must be other contributing factors. In
any case, it is clear that those in low education
or income categories represent a susceptible
subpopulation for all-cause mortality.

Educational attainment is a useful predic-
tor of mortality because it typically does not
change after adulthood. Additionally, this term
is available for all segments of the adult popu-
lation, even those not in the work force.
Although it may be a proxy for other factors,
various hypotheses have been presented for
why lower education might be a causal factor
for mortality. Education may be a marker for
factors (e.g., intelligence and good health in
early childhood) that allow for both educa-
tional attainment and good health in adult-
hood, for acquired knowledge that can be used
to obtain positive health outcomes, for relative
status in society, or for the development of
positive social networks (31). The protective
effect of higher education has been seen in the
United States (31) and worldwide (32,33).

We selected our baseline mortality risk
ratios from a study that evaluated risks for all-
cause mortality as a function of both educa-
tion and annual income among a cohort
25–64 years old, drawn from the National
Longitudinal Mortality Study (31). The rela-
tionship between education and mortality
was best described by a trichotomy (less than
high school education, high school diploma
or greater but no college diploma, or a college
diploma or greater). When compared with
the highest education group, the annual mor-
tality relative risk for men was 1.7 for less
than high school education and 1.5 for high
school diploma or greater but no college
diploma. For women, the corresponding rela-
tive risks were 1.5 and 1.2. The attenuation
in women has been documented previously
and can be attributed largely to the married
subpopulation of women (34). We applied
these relative risks to all individuals more
than 30 years old, although there is some evi-
dence that socioeconomic differences play less
of a role in determining mortality rates
among the aged (35).

Cardiovascular hospital admissions.
Several studies in the United States have eval-
uated the relationship between particulate
matter exposure and CHA among individuals
65 or more years old (24,25,36–43). Most
central estimates from these studies fall in the

range of a 0.5–1% increase in CHA for a 10
µg/m3 increase in daily concentrations of par-
ticulate matter < 10 µm in aerodynamic
diameter (PM10). Using a typical PM2.5:PM10

ratio of 60%, we would consider appropriate
a central estimate of an approximate 1%
increase in CHA per 10 µg/m3 increase in
daily PM2.5 concentrations. As a baseline, we
applied this percentage to the average back-
ground rate of 0.084 CHA per year per
individual ≥ 65 years old (44).

Although numerous factors might influ-
ence either the baseline risk or the relative risk
of an air-pollution–related CHA, we focused
on diabetes to illustrate the influence of a risk
factor that varies demographically and might
influence both risks. To estimate the number
of diabetic and nondiabetic CHA in a county
or census tract, we considered two relation-
ships: the risk factors for diabetes among the
elderly and the differential risk for a CHA
given the presence of diabetes.

In those > 65 years old, noninsulin-depen-
dent diabetes mellitus (NIDDM) accounts for
virtually all of the diabetic caseload. There are
numerous risk factors for NIDDM, including
age, obesity, family history, and sedentary
lifestyle. Although lifestyle variables are the
strongest predictors of diabetic status
[accounting for as much as 90% of population
attributable risk (45)], we cannot estimate
these variables at the census tract level from
publicly available data. In the absence of this
information, we estimated NIDDM preva-
lence as a function of gender, age, and race.
According to a national survey (46), NIDDM
prevalence in individuals > 65 years old is
higher among African Americans and
Mexican Americans than in non-Hispanic
whites, ranging from 10.9% for non-Hispanic
white males 65–74 years old to 29% for
Mexican-American females 65–74 years old.
We applied these estimates to our study popu-
lations, despite the limitations in applying
national relationships based on race to a spe-
cific geographic setting. The relationship
between race and common risk factors likely
varies widely across regions and within small
geographic areas, a feature that is not captured
by our model.

Regarding risks for a CHA, it has been
well established that diabetics have an
increased risk of heart disease. Several studies
also indicate that diabetics are admitted to the
hospital more frequently than are nondiabet-
ics (47,48). Thus, it is not surprising that
CHA rates are elevated in diabetic popula-
tions. According to a national diabetes sur-
veillance report (49), as of 1996, the annual
CHA rate was 0.20 admissions per year per
diabetic 65–74 years old and 0.27 for diabet-
ics ≥ 75 years old. In contrast, the rates for
the population as a whole are 0.06 (ages
65–74 years) and 0.11 (≥ 75 years) (44).

Using these two rates and the estimated dia-
betes prevalence across our study population,
we can calculate the CHA rate for nondiabet-
ics. Clearly, there are several appreciable
assumptions underlying these estimates.
Although we know that marked differences
can exist in CHA rates among states and
communities, we assume that tract-specific
rates vary only as a function of the estimated
number of diabetics, with CHA rates invari-
ant for nondiabetics. This likely underesti-
mates the degree of spatial and demographic
variability in CHA rates.

On the relative risk side, a time-series
study in Chicago (38) found a 2% increase in
CHA for diabetic individuals > 65 years old
for a 10 µg/m3 increase in PM10, versus a
0.9% increase for nondiabetics. In contrast,
the studies that evaluated factors such as race,
education, or poverty (24,37,43) found no
significant effect modification for CHA rela-
tive risks. To ensure that our concentration–
response function agrees with our nonstrati-
fied estimate, we assumed that a factor of two
difference exists between diabetics and non-
diabetics and calculated the concentration–
response function given the estimated number
of CHA in diabetics and nondiabetics in our
study population. The result is a 0.7%
increase in CHA per 10 µg/m3 increase in
PM2.5 for nondiabetics, with a 1.5% increase
for diabetics.

Pediatric asthma ERV. Many studies have
associated ERV for numerous respiratory and
cardiovascular causes with particulate matter,
but to date only two studies in the United
States have considered asthma-related visits
among children (defined here as ≤ 18 years
old). In Seattle (50), an 11.6 µg/m3 increase in
PM10 was associated with a 14% increase in
asthma ERV (95% CI, 5–23%), and a 9.5
µg/m3 increase in PM2.5 was associated with a
15% increase. This study found the relative
risk to be similar in high-use and low-use areas
(a proxy for socioeconomic status). In Atlanta
(51), a 4% increase in pediatric asthma ERV
was estimated for a 15 µg/m3 increase in PM10

concentrations (95% CI, 0.4–7%). As in
Seattle, there did not appear to be effect modi-
fication due to race or socioeconomic status.
Simply pooling these two studies using a ran-
dom effects model (52) provides a central esti-
mate of a 0.7% increase in asthma ERV per
microgram per cubic meter increase in PM10,
which we translate into an approximate 1%
increase in asthma ERV per microgram per
cubic meter increase in daily PM2.5. This can
be applied to a background asthma ERV rate
of 0.012 for children 0–4 years old, 0.0081
for children 5–14 years old, and 0.0069 for
children ≥ 15 years old (53).

Although the published studies did not
identify susceptible subpopulations from a
relative risk perspective, the background rate
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of asthma ERV would be anticipated to differ
widely across subpopulations. This would be
a function both of trends in asthma preva-
lence and of patterns in health care use across
populations.

The prevalence of asthma has increased
substantially in recent years (53), with lower-
income individuals and minorities dispropor-
tionately affected by the disease (54–58). Many
of the significant predictors of childhood
asthma, such as cockroach presence in the
home (59) and maternal education (60), are
related to socioeconomic status. Furthermore,
patterns of health care use are strongly related
to income. The ratio of anti-inflammatory to
beta-agonist medication is lower in low-income
communities and is inversely correlated with
hospitalization rates (61), and lower-income
populations lacking health insurance often use
emergency services as a means of primary care.
Thus, it would be expected that low-income
populations would have somewhat higher pedi-
atric asthma ERV rates.

Data on pediatric asthma ERV rates as a
function of income were limited, but substan-
tial racial differences have been documented.
According to data from the National Hospital
Ambulatory Medical Care Survey (53), across
all ages, the asthma ERV rate for African
Americans is nearly five times greater than
that for whites (0.023 and 0.0049 per capita,
respectively). No data were provided on
asthma ERV rates stratified across both age
and race, but a study of 3-year-olds in the
United States found a racial differential of
similar magnitude but with some indepen-
dent effects of both race and income (54).

Given available information, we estimated
baseline pediatric asthma ERV rates as a func-
tion of age and race, assuming the racial dispar-
ity to exist in all age groups. This encompasses
differences both in prevalence and in health
care use. As with our diabetes estimates, there
are some substantial limitations in using only
race as a predictor, because the relationship

between race and asthma ERV risk factors
varies by income, urban/rural status, and other
factors. Regardless, the consistent relationship
between race and ERV and the ability to
gather racial information at the census tract
level make this the best available covariate.

Results

Concentration reductions. With our atmos-
pheric dispersion model, the emission reduc-
tions at the five selected power plants would
lead to annual average PM2.5 (primary plus
secondary) concentration reductions ranging
from 0.009 to 0.9 µg/m3 in our receptor
region (Figure 2C). By way of comparison,
according to U.S. EPA AIRS data (62),
annual average PM2.5 concentrations in
Washington, DC, were approximately 14–18
µg/m3 in 1999. The maximum annual aver-
age PM2.5 concentration reduction is found
within Washington, DC, as might be antici-
pated by the power plant selection criteria
and the inclusion of primary PM2.5.

The geographic distribution of benefits
varies somewhat across particle types, power
plants, and seasons. Annual average primary
PM2.5 concentration reductions peak closer to
the plants and decrease more rapidly with dis-
tance than secondary sulfates or nitrates
(Figure 2). As a result, a greater fraction of
total exposure reduction (defined as the sum
across receptors of the product of concentra-
tion reduction and population assigned to the
receptor) occurs closer to the power plants for
primary than for secondary PM2.5 (Figure 3).
However, there is tremendous variability in
the distribution of total exposure reduction,
caused principally by variations in source
locations and pollutant type (primary vs. sec-
ondary). In addition, total exposure reduction
per unit emissions displayed expected sea-
sonal patterns, with slightly higher values for
primary PM2.5 in the winter and fall (related
in part to lower mixing heights) and higher
values for sulfates and lower values for

nitrates in the summer due to the effect of
temperature on relative conversion rates.

Health benefits. For premature mortality,
using nonstratified relative risks and homoge-
neous baseline mortality rates within coun-
ties, our central estimate is that emission
reductions from the five power plants would
lead to 210 fewer deaths per year (Table 2).
The estimated impact under the current
emissions scenario is 270 deaths per year. Of
the total mortality benefits, approximately
25% occur in individuals with less than high
school education (identical to the proportion
in the population). Approximately 16% of
mortality benefits accrue within 50 km of the
power plants, largely related to the substantial
contribution of secondary sulfates (62%) and
nitrates (19%) to total PM2.5 exposures.

In our susceptibility model, with both
baseline mortality rates and PM2.5 relative
risks stratified by educational attainment, our
understanding of the affected subpopulations
changes substantially (Table 2). The total
mortality benefit is largely unaffected, with a
slight increase associated with differences 
in educational attainment between the
Washington, DC, area and the ACS cohort.
However, 51% of the estimated mortality
benefits now accrue among individuals with
less than high school education, double the
prediction in the homogeneous risk model.

Although stratification by education does
not significantly influence the broad geo-
graphic patterns of benefits (i.e., the fraction of
benefits within 50 km), at the census tract level
benefits differ by as much as a factor of 13
between the models. Figure 4 depicts the geo-
graphic patterns of benefits under both the
baseline and susceptibility models, focusing
solely on census tracts in Washington, DC, for
simplicity. Using the baseline model, the mor-
tality risk reductions in Washington are rea-
sonably homogeneous, ranging from 36 to 67
fewer deaths per year per million individuals
> 30 years old. Under the education-stratified
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Figure 2. Combined concentration reductions (annual average, µg/m3) from hypothetical emission controls at five power plants: (A) primary PM2.5; (B) secondary
PM2.5; (C) total PM2.5.
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model, the range broadens considerably and
the distribution is more complex, with per
capita benefits now varying by more than a
factor of 10 across census tracts. The mortality
benefits are generally increased in southeastern
Washington, DC, the lowest-income area of
the city.

When we consider CHA among the
elderly, our baseline model estimates 59 fewer
CHA per year. Although it seems counterin-
tuitive that the mortality numbers could
exceed the morbidity numbers, this is related
to the limited focus on CHA because of only
short-term exposures among the elderly (vs.
all-cause mortality from long-term exposures
among individuals ≥ 30 years old). Using a
conventional model that assumes diabetics do
not differ in any way from nondiabetics, 13%
of the CHA benefits are estimated to occur
among diabetics, whereas 80% are found
among non-Hispanic whites (Table 2). The
geographic distribution of CHA benefits is
similar to the exposure reduction and mortal-
ity benefits, with differences reflecting the rel-
ative number of individuals 65–74 years old
and ≥ 75 years old within census tracts.

As expected, incorporating the diabetes-
based information has a minimal impact on
aggregate benefits but dramatically alters the
profile of the affected individuals (Table 2).
Using this model, 54% of the CHA benefits
are found among diabetics, with 76% among
non-Hispanic whites. Because we have
assumed that baseline CHA risk for nondia-
betics does not differ as a function of race or
income, the CHA estimates under the suscep-
tibility model are closer to those from the
baseline model than are those for mortality
(Figure 4). However, even considering only
diabetes-related susceptibility changes the
census tract-level benefits by as much as 40%.

Finally, we estimate 140 fewer pediatric
asthma ERV per year using our nonstratified
model (38% in children 0–4 years old, 46% in
children 5–14 years old). Twenty-seven percent
of benefits occur in African-American children
(who represent 21% of the study population).
When we stratify asthma ERV risk by race, the
total benefits increase to 160 fewer visits per
year, with significant changes in the geographic
and demographic distributions (Table 2). The
census-tract–level risk reduction varies by an
order of magnitude across Washington, DC,
with the benefits increased by more than a
factor of two in the eastern half of the city
(Figure 4). The proportion of benefits among
African-American children is increased to 64%,
commensurate with the assumption of greater
baseline asthma ERV rates.

Discussion

Our analytical approach demonstrates two
important points. First, given an interpreta-
tion of the epidemiologic evidence that

assumes that ambient concentrations in the
Washington, DC, area exceed any potential
population threshold for PM2.5 health effects,
emission controls at older fossil-fueled power
plants would provide tangible and quantifi-
able health benefits. Second, when we take
account of susceptible subpopulations and
differences in both relative risk and baseline
disease rates across these populations, the
small-scale geographic and demographic dis-
tributions of those benefits are strongly
affected. For the example of premature mor-
tality, if educational attainment influences
both the relative risk of air pollution and the
baseline mortality risk, then more than half of
the mortality benefits accrue among the 25%
of our study population with less than high
school education. Similarly, for pediatric
asthma ERV, the fact that background rates
are substantially greater in African Americans
implies that most ERV benefits accrue in
21% of the population, even given identical
relative risks from air pollution. The relatively
smaller differences found for CHA when
diabetes is considered illustrates that evidence

for differential effects on a relatively small
fraction of the population has a smaller effect
than a population-wide model.

There are clearly some barriers in both
interpretation of the study findings and appli-
cation of our model to other settings. One
important uncertainty is related to the strati-
fied risk models we selected. For all health
outcomes, we used stratification variables
(such as race) that might have independent
effects on baseline health but likely are prox-
ies for numerous socioeconomic end points.
If the stratification variables represent other
factors, this adds to the uncertainty in a site-
specific stratified analysis.

In general, we have applied susceptibility
models based on national data to a small
number of states, which has multiple inherent
limitations. Clearly, it would be preferable to
use local health data, but data at small geo-
graphic scales for a large region are difficult to
obtain and are rarely stratified across all
demographic variables of interest. In addi-
tion, the reliance on national data increases
the generalizability of our findings. Despite

Articles • Levy et al.

1258 VOLUME 110 | NUMBER 12 | December 2002 • Environmental Health Perspectives

Figure 3. Cumulative distribution of total exposure reduction as a function of distance from the source, by
power plant and pollutant type.
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Table 2. Magnitude and distribution of health benefits associated with modeled emission reductions at five
power plants near Washington, DC. 

Health outcome and Baseline model Full susceptibility model
stratification covariate (No stratification) (Stratification by listed covariate)

Deaths/year
Total 210 240
< High school education 52 120
≥ High school education 150 120

CHA/year
Total 59 60
Diabetic 8 33
Nondiabetic 51 27

Asthma ERV/year
Total 140 160
African American 38 100
Non-African American 100 57

Data presented are rounded to two significant figures; sums may not add because of rounding.



these issues, our models demonstrate that
simple assumptions about susceptibility can
be influential in our understanding of health
risks and benefits. The alternative is an
assumption of homogeneity, which itself
introduces implicit uncertainty and may con-
tribute to biases in selected settings.

Another limitation of our study is the fact
that we have devoted limited attention to
uncertainty analysis, a crucial element in
interpreting sensitive and complex findings.

Drawing on the uncertainty analyses in our
earlier work (4,11), most parametric changes
in CALPUFF led to changes to aggregate
benefits of less than a factor of two, whereas
variations in concentration–response assump-
tions (particularly for mortality) could influ-
ence estimates by as much as a factor of five.
The influence of population susceptibility is
generally at the lower end of this range, even
for small geographic scales. However, suscep-
tibility information has a greater influence on

the relative distribution of benefits than do
other assumptions, many of which tend to
affect all populations identically (e.g., the
population-averaged concentration–response
function). Furthermore, a broader view of
areas of heterogeneity or susceptibility [e.g.,
assumptions regarding particle size and
chemical composition, time–activity data, or
physiologic factors (63)] could increase the
importance of this evidence. Further analysis
that considers the full array of uncertainties
and evaluates which (if any) would be influ-
ential in policy decisions would be warranted.

In addition, although we have focused on
power plants (partly because of pending regu-
latory decisions at the time of our analysis),
the issue of susceptible subpopulations is
likely more significant for motor vehicle pol-
lution. Given that motor vehicles have low
stack heights and have a strong presence in
urban street canyons with high population
density, it is likely that aggregate impacts
would be spread over a smaller population
than for power plants. If the exposed popula-
tion had demographic differences from the
United States average, assumptions of homo-
geneity would bias the risk calculations.

Finally, any assessment of impacts from a
limited number of sources is somewhat
impaired by the relatively small reductions
when compared with baseline concentrations.
This makes field validation of model results dif-
ficult and implies that an ultimate comparison
of the costs and benefits of taking action would
be required to determine if action is warranted.

Despite these limitations, our analysis
illustrates that emission controls at older fos-
sil-fueled power plants could lead to quantifi-
able concentration and health benefits and
that susceptibility information informs the
interpretation of those benefits. Although the
individual benefits represent a small incre-
ment over baseline risks, the number of peo-
ple affected because of long-range pollution
transport implies aggregate benefits that are
relevant for policy evaluation. As the health
literature develops additional information
about differences in relative and absolute risk
across populations, risk assessments and bene-
fit–cost analyses should take advantage of this
information to provide more interpretable
information to decision makers.

Conclusions

We have evaluated the health benefits of emis-
sion controls at five older fossil-fueled power
plants in the Washington, DC, area, using
conventional risk assessment assumptions and
incorporating available information about sus-
ceptible subpopulations. We found that the
geographic and demographic distributions of
benefits differ substantially between the two
approaches. If robust and causal, our suscepti-
bility models identify subpopulations that
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Figure 4. Distribution of health benefits by census tract in Washington, DC (no color indicates zero at-risk
population).
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bear a disproportionate air pollution burden
and account for a substantial fraction of the
benefits of emission controls (lower-educated
individuals for mortality, diabetics for CHA,
and African Americans for asthma ERV). The
characterization of high-risk subpopulations
can help both in the interpretation of the risk
assessment and in targeting future exposure
assessment or epidemiologic efforts.
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